Dividing Polynomials: A Step-by-Step Guide
This article will guide you through the process of dividing the polynomial (3x^3 + 9x^2 + 8x + 4) by (x + 2).
Long Division Method
We will use the long division method to perform this division. Here's a breakdown of the steps:
-
Set up the problem: Write the division problem in the traditional long division format:
___________ x + 2 | 3x^3 + 9x^2 + 8x + 4
-
Divide the leading terms: Divide the leading term of the dividend (3x^3) by the leading term of the divisor (x). This gives us 3x^2. Write this above the dividend, aligning it with the x^2 term.
3x^2 ______ x + 2 | 3x^3 + 9x^2 + 8x + 4
-
Multiply the quotient term by the divisor: Multiply 3x^2 by (x + 2) to get 3x^3 + 6x^2. Write this result below the dividend.
3x^2 ______ x + 2 | 3x^3 + 9x^2 + 8x + 4 3x^3 + 6x^2
-
Subtract: Subtract the result from step 3 from the dividend. Be careful to distribute the minus sign.
3x^2 ______ x + 2 | 3x^3 + 9x^2 + 8x + 4 3x^3 + 6x^2 --------- 3x^2 + 8x
-
Bring down the next term: Bring down the next term (8x) from the dividend.
3x^2 ______ x + 2 | 3x^3 + 9x^2 + 8x + 4 3x^3 + 6x^2 --------- 3x^2 + 8x + 4
-
Repeat steps 2-5: Repeat the process: Divide the new leading term (3x^2) by the divisor's leading term (x) to get 3x. Write this above the dividend, aligning it with the x term.
3x^2 + 3x ______ x + 2 | 3x^3 + 9x^2 + 8x + 4 3x^3 + 6x^2 --------- 3x^2 + 8x + 4 3x^2 + 6x
Multiply 3x by (x + 2) to get 3x^2 + 6x. Subtract this from the previous result:
3x^2 + 3x ______ x + 2 | 3x^3 + 9x^2 + 8x + 4 3x^3 + 6x^2 --------- 3x^2 + 8x + 4 3x^2 + 6x ------- 2x + 4
-
Final step: Bring down the last term (4). Repeat the process: Divide 2x by x to get 2. Write this above the dividend, aligning it with the constant term.
3x^2 + 3x + 2 ______ x + 2 | 3x^3 + 9x^2 + 8x + 4 3x^3 + 6x^2 --------- 3x^2 + 8x + 4 3x^2 + 6x ------- 2x + 4 2x + 4
Multiply 2 by (x + 2) to get 2x + 4. Subtract this from the previous result:
3x^2 + 3x + 2 ______ x + 2 | 3x^3 + 9x^2 + 8x + 4 3x^3 + 6x^2 --------- 3x^2 + 8x + 4 3x^2 + 6x ------- 2x + 4 2x + 4 ------- 0
-
Result: Since the remainder is 0, we have successfully divided the polynomial. The quotient is 3x^2 + 3x + 2.
Conclusion:
We have demonstrated how to divide the polynomial (3x^3 + 9x^2 + 8x + 4) by (x + 2) using the long division method. The quotient of this division is 3x^2 + 3x + 2.